Machine Learning

MiniQ #11

Опубликовано: 11.7, 2018 -- Svetlana Leonchik

summer miniq Друзья! Приглашаем вас на очередной MiniQ в Витебске.

Программа встречи:

  • 18.30 - 18.50 Сбор участников;

  • 18.50 - 19.00 Приветственное слово;

  • 19.00 - 19.40 Machine Learning with Amazon SageMaker (Алексей Статут);

  • 19.40 - 20.00 Кофе-пауза;

  • 20.00 - 20.50 One stack to rule them all или «Не  всё  есть  в AppStore» (Дмитрий Чернявский);

  • 20:50 - 21.00 Заключительное слово.

Участие бесплатное, необходима регистрация.

Приходите сами и приглашайте друзей.

Будем рады увидеть всех небезразличных!

Время события: 
Четверг, Июль 19, 2018 - 18:30 до 21:00
г. Витебск, пр-т Строителей,1 Конференц-зал гостиницы «Лучёса»
Тип события: 
Внешнее событие

Belarus Big Data User Group Meet-up #22

Опубликовано: 10.1, 2017 -- Svetlana Leonchik

18.45 – 19.00: Welcome Coffee;

19.00 – 19.50 – «Machine Learning & Digital Signal Processing: Case Study on Human Movements Identification using Sensors Data». Alexander Gedranovich (Lead Data Scientist) & Dzmitry Markouski (Data Scientist), Rocket

We explore the case where sensors data from gyroscope and accelerometer were processed to detect and identify human movements. A combination of DSP (Digital Signal Processing) methods and machine learning techniques was applied in order to create solid processing pipeline and get nice results. There were multiple challenges we'd like to discuss: how to reconstruct 3D coordinates without GPS and magnet, how to understand where is the ground using single wearable device, how to find right features for machine learning and much more...;

19.50 – 20.10 – Coffee-break;

20.10 – 21.00 – «Apache Kafka: A few new words about the old familiar», Dmitry Orekhov, Software Engineering Team Leader at EPAM

What new could we say about the good old Kafka? I’m sure we could find a little. Especially, if we’re talking about recent 0.10 release of Kafka introduced new features: Connectors and Streams moved significantly Kafka towards to be a full-pledged Data Routing System. We’re going to talk about it, and touch a couple of interesting use-cases, which hopefully will change your mind about Kafka as a simple «Distributed Commit Log».

No registration required. Language is Russian



Время события: 
Вторник, Январь 24, 2017 - 18:45 до 21:00
г. Минск, ул. Фабрициуса 4, Imaguru: Startup Hub, 2-й этаж
Тип события: 
Внешнее событие

Coding Dojo: a gentle introduction to Machine Learning

Опубликовано: 11.12, 2013 -- pasha

Machine Learning is the art of writing programs that get better at performing a task as they gain experience, without being explicitly programmed to do so. Feed your program more data, and it will get smarter at handling new situations.

Some machine learning algorithms use fairly advanced math, but simple approaches can be surprisingly effective. In this Session, we'll take a classic Machine Learning challenge from, automatically recognizing hand-written digits (, and build a classifier, from scratch, using F#. So bring your laptop, and let's see how smart we can make our machines!

This session will be organized as an interactive workshop. Come over, and learn yourself a Machine Learning and F# for great good! No prior experience with Machine Learning required, and F# beginners are very welcome — it will be a great opportunity to see F# in action, and why it's awesome.

To get the most from the session please try and bring a laptop along with F# installed (ideally either MonoDevelop or Visual Studio Web Express/Full Edition).

About the speaker

Mathias Brandewinder has been writing software for about 10 years, primarily in C# until he fell in love with F# and functional programming. He enjoys arguing about code and how to make it better, and gets very excited when discussing TDD or F#. His other professional interests are applied math, predictive models and machine learning.

Free entrance.

Время события: 
Среда, Декабрь 11, 2013 - 19:00
Минск, Домбровская 9, офиск компании "Таукрафт"
Тип события: 
Внешнее событие
Subscribe to Machine Learning